Deluge of Atlantis

Deluge of Atlantis
Deluge of Atlantis

Friday, February 25, 2011

Major Volcanic Hotspots



Major Volcanic Hotspots



From Wikipedia




http://en.wikipedia.org/wiki/Timetable_of_major_worldwide_volcanic_eruptions

Earlier Quaternary eruptions
See also: List of Quaternary volcanic eruptions
2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.9 ka; VEI 6; 6 cubic kilometers (1.4 cu mi) of tephra.[19][20][21][22]
Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 17 ka ±5; more than 50 km3 (12 cu mi) of tephra.[3]
Lake Barrine, Atherton Tableland, North Queensland, Australia; was formed over 17 ka.
Menengai, East African Rift, Kenya; 29 ka[5]
Morne Diablotins, Commonwealth of Dominica; VEI 6; 30 ka (Grand Savanne Ignimbrite).[23]
Kurile Lake, Kamchatka Peninsula, Russia; Golygin eruption; about 41.5 ka; VEI 7[5]
Maninjau Caldera (size: 20 x 8 km), West Sumatra; VEI 7; around 52 ka; 220 to 250 cubic kilometers (52.8 to 60.0 cu mi) of tephra.[24]
Lake Toba (size: 100 x 30 km), Sumatra, Indonesia; 73 ka ±4; 2,500 to 3,000 cubic kilometers (599.8 to 719.7 cu mi) of tephra; probably 6,000 million tons of sulfur dioxide were emitted (Youngest Toba Tuff).[1][25][26][27][28]
Atitlán Caldera (size: 17 x 20 km), Guatemalan Highlands; Los Chocoyos eruption; formed in an eruption 84 ka; VEI 7; 300 km3 (72 cu mi) of tephra.[29]
Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 90 ka; last eruption was more than 600 cubic kilometers (144 cu mi) of tephra.[3][30]
Sierra La Primavera volcanic complex (size: 11 km wide), Guadalajara, Jalisco, Mexico; 95 ka; 20 cubic kilometers (5 cu mi) of Tala Tuff.[3][31]
Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 120 ka; 80 km3 (19 cu mi) of tephra.[3]
Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 140 ka; 80 km3 (19 cu mi) of tephra.[3]
Puy de Sancy, Massif Central, central France; it is part of an ancient stratovolcano which has been inactive for about 220,000 years.
Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 233 ka; more than 50 km3 (12 cu mi) of tephra.[3]
Mount Aso (size: 24 km wide), island of Kyūshū, Japan; caldera formed as a result of four huge caldera eruptions; 270 ka; 80 cubic kilometers (19 cu mi) of tephra.[3]
Uzon-Geyzernaya calderas (size: 9 x 18 km), Kamchatka Peninsula, Russia; 325-175 ka[32] 20 km3 (4.8 cu mi) of ignimbrite deposits.[33]
Diamante Caldera–Maipo volcano complex (size: 20 x 16 km), Argentina-Chile; 450 ka; 450 cubic kilometers (108 cu mi) of tephra.[3][34]
Yellowstone hotspot; Yellowstone Caldera (size: 45 x 85 km); 640 ka; VEI 8; more than 1,000 cubic kilometers (240 cu mi) of tephra (Lava Creek Tuff)[5]
Three Sisters (Oregon), USA; Tumalo volcanic center; with eruptions from 600 - 700 to 170 ka years ago
Uinkaret volcanic field, Arizona, USA; the Colorado River was dammed by lava flows multiple times from 725 to 100 ka.[35]
Mono County, California, USA; Long Valley Caldera; 758.9 ka ±1.8; VEI 7; 600 cubic kilometers (144 cu mi) of Bishop Tuff.[36][3]
Valles Caldera, New Mexico, USA; around 1.15 Ma; VEI 7; around 600 cubic kilometers (144 cu mi) of the Tshirege formation, Upper Bandelier eruption.[3][37][38]
Sutter Buttes, Central Valley of California, USA; were formed over 1.5 Ma by a now-extinct volcano.
Ebisutoge-Fukuda tephras, Japan; 1.75 Ma; 380 to 490 cubic kilometers (91.2 to 117.6 cu mi) of tephra.[3]
Yellowstone hotspot; Island Park Caldera (size: 100 x 50 km); 2.1 Ma; VEI 8; 2,450 cubic kilometers (588 cu mi) of Huckleberry Ridge Tuff.[3][5]
Cerro Galán (size: 32 km wide), Catamarca Province, northwestern Argentina; 2.2 Ma; VEI 8; 1,050 cubic kilometers (252 cu mi) of Cerro Galán Ignimbrite.[39]

Since 1000 AD
1809–10 ice core eventPinatubo, island of Luzon, Philippines; 1991, Jun 15; VEI 6; 6 to 16 cubic kilometers (1.4 to 3.8 cu mi) of tephra;[b] an estimated 20 million tons of sulfur dioxide were emitted[q]
Novarupta, Alaska Peninsula; 1912, Jun 6; VEI 6; 13 to 15 cubic kilometers (3.1 to 3.6 cu mi) of lava[r][s][t]
Santa Maria, Guatemala; 1902, Oct 24; VEI 6; 20 cubic kilometres (4.8 cu mi) of tephra[u]
Mount Tarawera, Taupo Volcanic Zone, New Zealand; 1886, Jun 10; VEI 5; 2 cubic kilometres (0.48 cu mi) of tephra[b]
Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 cubic kilometres (5.0 cu mi) of tephra[v]
Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 150 cubic kilometres (36 cu mi) of tephra[b]; an estimated 200 million tons of sulfur dioxide were emitted, produced the "Year Without a Summer"[w]
1809–10 ice core event; an unknown eruption at a near-equatorial location and a magnitude roughly half that of Tambora, emission of sulfur dioxide around the amount of the 1815 Tambora eruption (ice cores from Antarctica and Greenland).[x] In the year 1808, there were also major eruptions in Urzelina, Azores (Urzelina eruption, fissure vent), Klyuchevskoy, Kamchatka Peninsula,[y] and Taal, Philippines.[z]
Note: Thompson Island, Northeast of Bouvetøya, South Atlantic Ocean, disappeared in the nineteenth century.[aa]
Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; 14 cubic kilometers of lava, an estimated 120 million tons of sulfur dioxide were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[ab]
Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 cubic kilometers (7.2 cu mi) of tephra[b]
Kolumbo, Santorini, Greece; 1650, Sep 27; VEI 6; 60 cubic kilometers (14.4 cu mi) of tephra[ac]
Huaynaputina, Peru; 1600, Feb 19; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[ad]
Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 cubic kilometres (3.4 cu mi) of tephra[b]
Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra[b]
1452–53 ice core event, New Hebrides arc, Vanuatu; location of this eruption in the South Pacific is uncertain; only pyroclastic flows are found at Kuwae; 36 to 96 cubic kilometers (8.6 to 23.0 cu mi) of tephra; 175-700 million tons of sulfuric acid[ae][af][ag]
Mount Tarawera, Taupo Volcanic Zone, New Zealand; 1310 ±12; VEI 5; 5 cubic kilometres (1.2 cu mi) of tephra (Kaharoa eruption)[b]
Quilotoa, Ecuador; 1280(?); VEI 6; 21 cubic kilometres (5.0 cu mi) of tephra[b]
1258 ice core event, tropics; 200 to 800 cubic kilometers (48.0 to 191.9 cu mi) of tephra[ah]
[edit] 1 to 1000 ADChangbai Mountains (Changbaishan), Eastern China/ North Korea border; Tianchi eruption of the Baekdu Mountain; 969 AD ±20 years[ai]; VEI 7; 76 to 116 cubic kilometers (18.2 to 27.8 cu mi) of tephra[b]
Eldgjá eruption, Laki system, Iceland; 934-940 AD; VEI 4; an estimated 18 cubic kilometres (4.3 cu mi) of lava poured out of the earth,[aj] an estimated 219 million tons of sulfur dioxide were emitted[ak]

Major volcanoes of MexicoCeboruco, Northwest of the Trans-Mexican Volcanic Belt; 930 AD ±200; VEI 6; 11 cubic kilometres (2.6 cu mi) of tephra[b]
Dakataua, Northern tip of the Willaumez Peninsula, New Britain, Papua New Guinea; 800 AD ±50; VEI 6?; 10 cubic kilometres (2.4 cu mi)? of tephra[b]
Pago, East of Kimbe, New Britain, Papua New Guinea; Witori Caldera; 710 AD ±75; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[b]
Mount Churchill, eastern Alaska; 700 AD ±200; VEI 6; 20 cubic kilometres (4.8 cu mi) of tephra[b]
Rabaul, Rabaul Caldera, New Britain; 540 AD ±100; VEI 6; 11 cubic kilometres (2.6 cu mi) of tephra[b]
Ilopango, El Salvador; 450 AD ±30; VEI 6; 71 cubic kilometres (17 cu mi) of tephra[b]
Ksudach, Kamchatka Peninsula, Russia; 240 AD ±l00; VEI 6; 20 to 26 cubic kilometers (4.8 to 6.2 cu mi) of tephra[b]
Taupo Volcanic Zone, Hatepe eruption of Taupo Volcano, New Zealand; 230 AD ±16; VEI 7; 120 cubic kilometres (29 cu mi) of tephra[al]
Mount Vesuvius, Italy; 79 AD Oct 24 (?); VEI 5?; 2.8 to 3.8 cubic kilometers (0.7 to 0.9 cu mi) of tephra (Pompeii eruption)[b][am][an]
Mount Churchill, eastern Alaska; 60 AD ±200; VEI 6; 25 cubic kilometres (6.0 cu mi) of tephra[b]
Ambrym, Vanuatu; 50 AD ±100; VEI 6; 6 to 8 cubic kilometers (1.4 to 1.9 cu mi) of tephra[b]

 Before the Common Era (BC/BCE)
Apoyeque, Nicaragua; 50 BC ±100; VEI 6; 18 cubic kilometres (4.3 cu mi) of tephra[b]
Okmok, Okmok Caldera, Aleutian Islands; 100 BC ±50; VEI 6; 4 to 6 cubic kilometers (1.0 to 1.4 cu mi) of tephra[b]
Raoul Island, Kermadec Islands, New Zealand; 250 BC ±75; VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[b]
Mount Meager, Garibaldi Volcanic Belt, Canada; 400 BC ±50; VEI 5
Mount Tongariro, Taupo Volcanic Zone, New Zealand; 550 BC ±200; VEI 5; 1.2 cubic kilometres (0.29 cu mi) of tephra[b]
Pinatubo, island of Luzon, Philippines; 1050 BC ±500; VEI 6; 10 to 16 cubic kilometers (2.4 to 3.8 cu mi) of tephra[b]
Avachinsky, Kamchatka; 1350 BC (?); VEI 5; more than 1.2 cubic kilometres (0.29 cu mi) of tephra (tephra layer IIAV3)[b]
Pago, east of Kimbe, New Britain, Papua New Guinea; Witori Caldera; 1370 BC ±100; VEI 6; 30 cubic kilometres (7.2 cu mi) of tephra[b]
Taupo Volcanic Zone, Taupo, New Zealand; 1460 BC ±40; VEI 6; 17 cubic kilometres (4.1 cu mi) of tephra[b]
Avachinsky, Kamchatka; 1500 BC (?); VEI 5; more than 3.6 cubic kilometres (0.86 cu mi) of tephra (tephra layer AV1)[b]
Santorini (Thera), Greece; Youngest Caldera; Minoan eruption; 1610 BC ±14 years; VEI 7; 99 cubic kilometres (24 cu mi) of tephra[b]; ending the Minoan settlement at Akrotiri and the Minoan age on Crete
Mount Aniakchak, Alaska Peninsula; 1645 BC ±10; VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[b]
Veniaminof, Alaska Peninsula; 1750 BC (?); VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[b]
Mount St. Helens, Washington, USA; 1860 BC (?); VEI 6; 15 cubic kilometres (3.6 cu mi) of tephra[b]
Mount Hudson, Cerro, Southern Chile; 1890 BC (?); VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[b]
Black Peak, Alaska Peninsula; 1900 BC ±150; VEI 6; 10 to 50 cubic kilometers (2.4 to 12.0 cu mi) of tephra[b]
Long Island (Papua New Guinea), Northeast of New Guinea; 2040 BC ± 100; VEI 6; more than 11 cubic kilometres (2.6 cu mi) of tephra[b]
Mount Vesuvius, Italy; 2420 BC ±40; VEI 5?; 3.9 cubic kilometres (0.94 cu mi) of tephra (Avellino eruption)[b][am][an][ao]
Avachinsky, Kamchatka; 3200 BC ±150; VEI 5; more than 1.1 cubic kilometres (0.26 cu mi) of tephra (tephra layer IAv20; AV3)[b]
Pinatubo, island of Luzon, Philippines; 3550 BC (?); VEI 6; 10 to 16 cubic kilometers (2.4 to 3.8 cu mi) of tephra[b]
Talisay (Taal) caldera (size: 15 x 20 km), island of Luzon, Philippines; 3580 BC ±200; VEI 6; 50 cubic kilometres (12 cu mi) of tephra[b]
Haroharo Caldera, Taupo Volcanic Zone, New Zealand; 3580 BC ±50; VEI 5; 2.8 cubic kilometres (0.67 cu mi) of tephra[b]
Pago, New Britain; 4000 BC ± 200; VEI 6?; 10 cubic kilometres (2.4 cu mi)? of tephra[b]
Masaya Volcano, Nicaragua; 4050 BC (?); VEI 6; more than 13 cubic kilometres (3.1 cu mi) of tephra[b]
Avachinsky, Kamchatka; 4340 BC ±75; VEI 5; more than 1.3 cubic kilometres (0.31 cu mi) of tephra (tephra layer IAv12; AV4)[b]
Kikai Caldera (size: 19 km), Ryukyu Islands, Japan; Akahoya eruption; 4350 BC (?); VEI 7; 80 to 220 cubic kilometers (19.2 to 52.8 cu mi) of tephra[b]
Macauley Island, Kermadec Islands, New Zealand; 4360 BC ±200; VEI 6; 100 cubic kilometres (24 cu mi)? of tephra[b][ap]
Mount Hudson, Cerro, Southern Chile; 4750 BC (?); VEI 6; 18 cubic kilometres (4.3 cu mi) of tephra[b]
Mount Aniakchak, Alaska Peninsula; 5250 BC ±1000; VEI 6; 10 to 50 cubic kilometers (2.4 to 12.0 cu mi) of tephra[b]
Mashu, Hokkaido, Japan; 5550 BC ±100; VEI 6; 19 cubic kilometres (4.6 cu mi) of tephra[b]
Tao-Rusyr Caldera, Kuril Islands; 5550 BC ±75; VEI 6; 30 to 36 cubic kilometers (7.2 to 8.6 cu mi) of tephra[b]
Mayor Island/Tuhua, Taupo Volcanic Zone, New Zealand; 5060 BC ±200; VEI 5; 1.6 cubic kilometres (0.38 cu mi) of tephra[b]
Crater Lake (Mount Mazama), Oregon, USA; 5677 BC ±150; VEI 7; 150 cubic kilometres (36 cu mi) of tephra[b]
Khangar, Kamchatka Peninsula, Russia; 5700 BC ± 16; VEI 6; 14 to 16 cubic kilometers (3.4 to 3.8 cu mi) of tephra[b]
Crater Lake (Mount Mazama), Oregon, USA; 5900 BC ± 50; VEI 6; 8 to 28 cubic kilometers (1.9 to 6.7 cu mi) of tephra[b]
Avachinsky, Kamchatka; 5980 BC ±100; VEI 5; more than 8 to 10 cubic kilometers (1.9 to 2.4 cu mi) of tephra (tephra layer IAv1)[b]
Menengai, East African Rift, Kenya; 6050 BC (?); VEI 6; 70 cubic kilometres (17 cu mi)? of tephra[b]
Haroharo Caldera, Taupo Volcanic Zone, New Zealand; 6060 BC ±50; VEI 5; 1.2 cubic kilometres (0.29 cu mi) of tephra[b]
Sakurajima, island of Kyūshū, Japan; Aira Caldera; 6200 BC ±1000; VEI 6; 12 cubic kilometres (2.9 cu mi) of tephra[b]
Kurile Caldera (size: 8 x 14 km), Kamchatka Peninsula, Russia; 6440 BC ± 25 years; VEI 7; 140 to 180 cubic kilometers (33.6 to 43.2 cu mi) of tephra (Ilinsky eruption)[b]
Karymsky, Kamchatka Peninsula, Russia; 6600 BC (?); VEI 6; 50 to 350 cubic kilometers (12.0 to 84.0 cu mi) of tephra[b]
Mount Vesuvius, Italy; 6940 BC ±100; VEI 5?; 2.75 to 2.85 cubic kilometers (0.7 to 0.7 cu mi) of tephra (Mercato eruption)[b][am][an]
Unimak Island, Fisher Caldera, Aleutian Islands; 7420 BC ±200; VEI 6; more than 50 cubic kilometres (12 cu mi) of tephra[b]
Pinatubo, island of Luzon, Philippines; 7460 BC ±150; VEI 6?[b]
Lvinaya Past, Kuril Islands; 7480 BC ±50; VEI 6; 7 to 8 cubic kilometers (1.7 to 1.9 cu mi) of tephra[b]
Rotoma Caldera, Taupo Volcanic Zone, New Zealand; 7560 BC ±18; VEI 5; more than 5.6 cubic kilometres (1.3 cu mi) of tephra[b]
Taupo Caldera, Taupo Volcanic Zone, New Zealand; 8130 BC ±200; VEI 5; 4.7 cubic kilometres (1.1 cu mi) of tephra[b]
Grimsvotn, Northeastern Iceland; 8230 BC ±50; VEI 6; more than 15 cubic kilometres (3.6 cu mi) of tephra[b]
Ulreung, Korea; 8750 BC (?); VEI 6; more than 10 cubic kilometres (2.4 cu mi) of tephra[b]
Mount Tongariro, Taupo Volcanic Zone, New Zealand; 9450 BC (?); VEI 5; 1.7 cubic kilometres (0.41 cu mi) of tephra[b]
Taupo Caldera, Taupo Volcanic Zone, New Zealand; 9460 BC ±200; VEI 5; 1.4 cubic kilometres (0.34 cu mi) of tephra[b]
Mount Tongariro, Taupo Volcanic Zone, New Zealand; 9650 BC (?); VEI 5; 1.6 cubic kilometres (0.38 cu mi) of tephra[b]
Nevado de Toluca, State of Mexico, Trans-Mexican Volcanic Belt; 10.5 ka; VEI 6; 14 cubic kilometres (3.4 cu mi) of tephra (Upper Toluca Pumice )[b][aq]
11.258 ka; GISP2 ice core event[a]

Pleistocene eruptions
2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

12.657 ka; GISP2 ice core event[a]
Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.900 ka; VEI 6; 6 cubic kilometers (1.4 cu mi) of tephra.[ar][as][at][au]
Mount Vesuvius, Italy; 16 ka; VEI 5; (Green Pumice)[am][an]
Mount Vesuvius, Italy; 18.3 ka; VEI 6; (Basal Pumice)[am][an]
Santorini (Thera), Greece; Cape Riva Caldera; about 21 ka[b]
Aira Caldera, south of the island of Kyūshū, Japan; about 22 ka; VEI 7; more than 400 cubic kilometers (96.0 cu mi) of tephra.[av]
Taupo Volcanic Zone, Oruanui eruption, Taupo volcano, New Zealand, around 24.5 ka in the Late Pleistocene, VEI 8; generated approximately 1,170 cubic kilometers (280.7 cu mi) of tephra.[aw][ax][ay][az]
Laguna Caldera (size: 10 x 20 km), South-East of Manila, island of Luzon; 27-29 ka[b]
Campi Flegrei, Naples, Italy; 39.280 ka ± 0.11[ba]; 200 cubic kilometres of lava (Campanian Tuff) [a]
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 40 ka; 2 cubic kilometers (0.5 cu mi) of tephra
Taupo Volcanic Zone, Rotoiti Ignimbrite, North Island, New Zealand; VEI 7; about 50 ka, about 240 cubic kilometers (57.6 cu mi) of tephra.[bb]
Santorini (Thera), Greece; Skaros Caldera; about 70 ka[b]
Lake Toba (size: 100 x 30 km), Sumatra, Indonesia; 73 ka ±4; 2,500 to 3,000 cubic kilometers (599.8 to 719.7 cu mi) of tephra; probably 6,000 million tons of sulfur dioxide were emitted (Youngest Toba Tuff).[q][bc][bd][be][bf]
Yellowstone hotspot; Yellowstone Caldera; between 70 and 150 ka; 1,000 cubic kilometers (239.9 cu mi) intracaldera rhyolitic lava flows.[b]
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 150 ka; 2 cubic kilometers (0.5 cu mi) of tephra
Kos-Nisyros Caldera, Greece; 161 ka; 110 km3 (26 cu mi) of Kos Plateau Tuff.[a]
Taal Caldera, island of Luzon, Philippines; 25–30 km caldera formed by four explosive eruptions between 500 and 100 ka
Santorini (Thera), Greece; Southern Caldera; about 180 ka[b]
Taupo Volcanic Zone, Rotorua Caldera (size: 22 km wide), New Zealand; 220 ka; more than 340 cubic kilometers (81.6 cu mi) of tephra.[a]
Taupo Volcanic Zone, Maroa Caldera (size: 16 x 25 km), New Zealand; 230 ka; 140 cubic kilometers (33.6 cu mi) of tephra.[a]
Taupo Volcanic Zone, Reporoa Caldera (size: 10 x 15 km), New Zealand; 230 ka; VEI 7; around 100 cubic kilometers (24.0 cu mi) of tephra[b]
Taupo Volcanic Zone, Whakamaru Caldera (size: 30 x 40 km), North Island, New Zealand; around 254 ka; VEI 8; 1,200 to 2,000 cubic kilometers (288 to 480 cu mi) of tephra (Whakamaru Ignimbrite/Mount Curl Tephra)[bg][bh]
Taupo Volcanic Zone, Matahina Ignimbrite, Haroharo Caldera, North Island, New Zealand; VEI 7; 280 ka; about 120 cubic kilometers (28.8 cu mi) of tephra.[bi]
Sabatini volcanic complex, Sabatini, Italy; 374 ka; more than 200 cubic kilometers (48 cu mi) of Morphi tephra.[a]
Roccamonfina Caldera (size: 65 x 55 km), Roccamonfina, Italy; 385 ka; 100 to 125 cubic kilometers (24.0 to 30.0 cu mi) of tephra.[a]
Lake Toba, Sumatra, Indonesia; 501 ka ±5 (Middle Toba Tuff)[be]
Galeras, Andes, Northern Volcanic Zone, Colombian department of Nariño; 560 ka; 15 cubic kilometers (3.6 cu mi) of tephra
Yellowstone hotspot; Yellowstone Caldera (size: 45 x 85 km); 640 ka; VEI 8; more than 1,000 cubic kilometers (240 cu mi) of tephra (Lava Creek Tuff)[b]
Lake Toba, Sumatra, Indonesia; 840 ka ±30 (Oldest Toba Tuff)[be]
Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 0.97 Ma; more than 300 cubic kilometers (72.0 cu mi) Rocky Hill Ignimbrite[a]
Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 1.01 Ma; more than 300 cubic kilometers (72.0 cu mi) Unit E[a]
Lake Toba, Sumatra, Indonesia; 1.2 ±0.16 Ma (Haranggoal Dacite Tuff)[be]
Taupo Volcanic Zone, Mangakino Caldera, North Island, New Zealand; 1.23 Ma; more than 300 cubic kilometers (72.0 cu mi) Ongatit Ignimbrite[a][bj]
Yellowstone hotspot; Henry's Fork Caldera (size: 16 km wide); 1.3 Ma; VEI 7; 280 cubic kilometers (67.2 cu mi) of Mesa Falls Tuff.[b]
Yellowstone hotspot; Island Park Caldera (size: 100 x 50 km); 2.1 Ma; VEI 8; 2,450 cubic kilometers (588 cu mi) of Huckleberry Ridge Tuff.[a][b]

Notes

GrímsvötnLakiEldgjáKatlaBárðarbungaTorfajökullAskjaLokiEyjafjallajökullIceland: volcanoes
Volcanism in IcelandIceland has four volcanic zones: Reykjanes (Mid-Atlantic Ridge),[bk] West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ). The Mid-Iceland Belt (MIB) connects them across central Iceland. There are two intraplate belts too (Öræfajökull (ÖVB) and Snæfellsnes (SVB)).
Iceland's East Volcanic Zone: the central volcanoes of Vonarskard and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna.[bl][bm][bn]
Laki is part of a volcanic system, centering on the Grímsvötn volcano (Long NE-SW-trending fissure systems, including Laki, extend from the central volcano).[b]
The Eldgjá canyon and the Katla volcano form another volcanic system. Although the Eldgjá canyon and the Laki fissure are very near from each other, lava from the Katla and the Hekla volcanic systems result in transitional alkalic basalts and lava from the central volcanoes result in tholeiitic basalts.
The central volcano of Bárðarbunga, the Veidivötn and Trollagigar fissures form one volcanic system, which extend about 100 km SW to near Torfajökull volcano and 50 km NE to near Askja volcano, respectively. The subglacial Loki-Fögrufjöll volcanic system located SW of Bárðarbunga volcano is also part of the Bárðarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano (15 km southwest of Bárðarbunga); the Loki ridge trends to the NE and the Fögrufjöll ridge to the SW.[b]
New Zealand, North Island, Taupo Volcanic Zone:
The following Volcanic Centers belong to the Taupo Volcanic Zone: Rotorua, Okataina, Maroa, Taupo, Tongariro and Mangakino.[bo] It includes Mangakino volcano, Reporoa Caldera, Mount Tarawera, Mount Ruapehu, Mount Tongariro and White Island. The Taupo Volcanic Zone forms a southern portion of the active Lau-Havre-Taupo back-arc basin, which lies behind the Kermadec-Tonga subduction zone (Hikurangi Trough - Kermadec Trench - Tonga Trench).[bp] Some lakes in the area: Taupo, Rotorua, Rotomahana, and Rerewhakaaitu. Lake Okataina, Lake Tarawera, Lake Rotokakahi (Green Lake), Lake Tikitapu (Blue Lake), Lake Okareka, and Lake Rotoiti lie within the Okataina Caldera.
Taupo Volcanic Zone, the Mangakino Volcanic Center is the westernmost and oldest rhyolitic caldera volcano in the Taupo Volcanic Zone. Mangakino is a town too.[bq]
Taupo Volcanic Zone, Maroa Volcanic Center. The Maroa Caldera formed in the Northeast corner of the Whakamaru Caldera. The Whakamaru Caldera partially overlaps with the Taupo Caldera on the South. The Orakeikorako, Ngatamariki, Rotokaua, and Wairakei hydrothermal areas are located within or adjacent to the Whakamaru caldera. Whakamaru is a town too.[b]
The oldest volcanic zone in the North Island is the Northland Region, then the Coromandel Volcanic Zone (CVZ), then the Mangakino caldera complex and the Kapenga Caldera and then the rest of the Taupo Volcanic Zone (TVZ).
Santorini, South Aegean Volcanic Arc. The southern Aegean is one of the most rapidly deforming regions of the Himalayan-Alpine mountain belt (Alpide belt).[br]
The twin volcanoes of Nindirí and Masaya lie within the massive Pleistocene Las Sierras pyroclastic shield volcano.[b]
There are two peaks in the Colima volcano complex: Nevado de Colima (4,330 m), which is older and inactive, lies 5 km north of the younger and very active 3,860 m Volcán de Colima (also called Volcán de Fuego de Colima).
The largely submarine Kuwae Caldera cuts the flank of the Late Pleistocene or Holocene Tavani Ruru volcano, the submarine volcano Karua lies near the northern rim of Kuwae Caldera.[b]
Bismarck volcanic arc, the Rabaul Caldera includes the sub-vent of Tavurvur and the sub-vent of Vulcan.
Bismarck volcanic arc, Pago volcano, New Britain, Papua New Guinea, is a young post-caldera cone within the Witori Caldera. The Buru Caldera cuts the SW flank of the Witori volcano.[b]
Sakurajima, Kyūshū, Japan, is a volcano of the Aira Caldera.
The Mount Unzen volcanic complex, East of Nagasaki, Japan, comprises three large stratovolcanoes with complex structures, Kinugasa on the North, Fugen-dake at the East-center, and Kusenbu on the South.

Nomenclature
Each state/ country seem to have a slightly different approach, but there is an order:

Craton, and then Province as sections or regions of a craton.
First: volcanic arc, volcanic belt and volcanic zone.
Second: volcanic area, caldera cluster and caldera complex.
Third: volcanic field, volcanic system and volcanic center.
A volcanic field is a localized area of the Earth's crust that is prone to localized volcanic activity.

A volcanic group (aka a volcanic complex) is a collection of related volcanoes or volcanic landforms.
Neutral: volcanic cluster and volcanic locus.
In the Basin and Range Province the volcanic fields are nested. The McDermit volcanic field, is also named Orevada rift volcanic field. The Latir-Questa volcanic locus and the Taos Plateau volcanic field seem to be in a similar area. The Southwest Nevada volcanic field, the Crater Flat-Lunar Crater volcanic zone, the Central Nevada volcanic field, the Indian Peak volcanic field and the Marysvale volcanic field seem to have no transition between each other; the Ocate volcanic field is also known as the Mora volcanic field; and the Red Hill volcanic field is also known as Quemado volcanic field.

References
1.^ a b c d e f g h i j k l m "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces". Teton Tectonics. http://www.tetontectonics.org/Climate/Table_S1.pdf. Retrieved 2010-03-16.
2.^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions
3.^ a b Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr". Quaternary Research 67: 57–68. doi:10.1016/j.yqres.2006.07.004. http://media.longnow.org/files/2/Salzer_Hughes_2007.pdf. Retrieved 2010-03-18.
4.^ Hantemirov, Rashit M.; Shiyatov, Stepan G. (2002). "A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia". The Holocene 12 (6): 717–726. doi:10.1191/0959683602hl585rp.
5.^ Eronen, Matti; Pentti Zetterberg, Keith R. Briffa, Markus Lindholm, Jouko Meriläinen, Mauri Timonen (2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences". The Holocene 12 (6): 673–680. doi:10.1191/0959683602hl580rp.
6.^ Helama, Samuli; Markus Lindholm, Mauri Timonen, Jouko Meriläinen, Matti Eronen (2002). "The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer temperatures for 7500 years". The Holocene 12 (6): 681–7. doi:10.1191/0959683602hl581rp.
7.^ Zielinski, Gregory A.; Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M., Meese, D.A., Gow, A.J., Alley, R.B. (13 May 1994). "Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano–climate system". Science 264 (5161): 948–952. doi:10.1126/science.264.5161.948. PMID 17830082.
8.^ Zielinski, Gregory A. (1995). "Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core". Journal of Geophysical Research 100 (D10): 20937–20955. doi:10.1029/95JD01751. http://www.agu.org/pubs/crossref/1995.../95JD01751.shtml. Retrieved 2010-03-19.
9.^ a b Clausen, H.B.; Hammer, C.U., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Kipfstuhl, J., Legrand, M. (1997). "A comparison of volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland ice cores.". Journal of Geophysical Research 102 (C12): 26707–23. doi:10.1029/97JC00587. http://www.agu.org/pubs/crossref/1997/97JC00587.shtml. Retrieved 2010-03-19.
10.^ Langway, C.C.; Osada, K., Clausen, H.B., Hammer, C.U., Shoji, H. (1995). "A 10-century comparison of prominent bipolar volcanic events in ice cores.". Journal of Geophysical Research 100 (D8): 16241–16247. doi:10.1029/95JD01175. http://www.agu.org/pubs/crossref/1995/95JD01175.shtml. Retrieved 2010-03-19.
11.^ Budner, Drew, and Cole-Dai, Jihong (2003). "The number and magnitude of explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core, in Volcanism and the Earth's Atmosphere.". In Robock, A., and Oppenheimer, C.. Volcanic Events from a New South Pole Ice Core. American Geophysical Union. pp. 165–176. doi:10.1029/139GM10 (inactive 2010-06-11). http://learn.sdstate.edu/Jihong_Cole-Dai/vea2003.pdf
12.^ Cole-Dai, J.; Mosley-Thompson, E., Thompson, L.G. (1997). "Annually resolved southern hemisphere volcanic history from two Antarctic ice cores.". Journal of Geophysical Research 102: 16761–71. doi:10.1029/97JD01394. http://bprc.osu.edu/Icecore/jcd-jgr-97.pdf. Retrieved 2010-03-19.
13.^ Crowley, Thomas J.; Criste, Tamara A., Smith, Neil R. (1993). "Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change.". Geophysical Research Letters 20 (3): 209–212. doi:10.1029/93GL00207. http://www.agu.org/pubs/crossref/1993/93GL00207.shtml. Retrieved 2010-03-19.
14.^ Lisiecki, L. E.; Raymo, M. E. (January 2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records" (PDF). Paleoceanography 20: PA1003. doi:10.1029/2004PA001071. http://lorraine-lisiecki.com/LisieckiRaymo2005.pdf.
Lisiecki, L. E.; Raymo, M. E. (May 2005). "Correction to “A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records”". Paleoceanography 20: PA2007. doi:10.1029/2005PA001164.
data: doi:10.1594/PANGAEA.704257. edit
15.^ Baillie, M.G.L. (1994). "Dendrochronology raises questions about the nature of the AD 536 dust-veil event". The Holocene 4 (2): 212–7. doi:10.1177/095968369400400211.
16.^ "International Stratigraphic Chart". International Commission on Stratigraphy. http://www.stratigraphy.org/upload/ISChart2009.pdf. Retrieved 2009-12-23.
17.^ a b Robock, A., C.M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research 114: D10107. doi:10.1029/2008JD011652.
18.^ Brantley, Steven R. (1999-01-04). Volcanoes of the United States. United States Geological Survey. pp. 30. ISBN 0160450543. OCLC 30835169 44858915 156941033 30835169 44858915. http://pubs.usgs.gov/gip/volcus/index.html. Retrieved 2008-09-12.
19.^ Judy Fierstein; Wes Hildreth, James W. Hendley II, and Peter H. Stauffer (1998). Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98. Version 1.0. United States Geological Survey. http://pubs.usgs.gov/fs/fs075-98/. Retrieved 2008-09-10.
20.^ Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology (Springer) 54 (8): 646. doi:10.1007/BF00430778.
21.^ "Santa Maria". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=. Retrieved 2010-03-19.
22.^ Hopkinson, Deborah (Jan 2004). The Volcano That Shook the world: Krakatoa 1883. 11. New York: Storyworks. p. 8. http://teacher.scholastic.com/activities/wwatch/volcanoes/witnesses.htm.
23.^ http://www.earlham.edu/~ethribe/web/tambora.htm
24.^ Dai, Jihong; Ellen Mosley-Thompson and Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research (Atmospheres) 96 (D9): 17,361–17,366. http://www.agu.org/pubs/crossref/1991/91JD01634.shtml.
25.^ http://www.kscnet.ru/ivs/kvert/volcanoes/Klyuchevskoy/index_eng.html
26.^ http://www.iml.rwth-aachen.de/Petrographie/taal-mas/ta-maso.htm
27.^ Baker, P. E. (1967). "Historical and geological notes on Bouvetoya". British Antarctic Survey Bulletin 13: 71–84. http://www.antarctic.ac.uk/documents/bas_bulletins/bulletin13_06.pdf. Retrieved 17 June 2010. "Abstract: it is suggested that "Thompson Island",... may have disappeared as a result of a volcanic eruption during the nineteenth century.".
28.^ BBC Timewatch: "Killer Cloud", broadcast 19 January 2007
29.^ Haraldur Sigurdsson, S. Carey, C. Mandeville (1990). "Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano". II. Thera and the Aegean World III: Proceedings of the Third Thera Conference. pp. 100–12.
30.^ "Huaynaputina". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-03=. Retrieved 2008-12-29.
31.^ Nemeth, Karoly; Shane J. Cronin, James D.L. White (2007). "Kuwae caldera and climate confusion.". The Open Geology Journal 1 (5): 7–11. doi:10.2174/1874262900701010007.
32.^ Gao, Chaochao; A. Robock, S. Self, J. B. Witter, J. P. Steffenson, H. B. Clausen, M.-L. Siggaard-Andersen, S. Johnsen, P. A. Mayewski, and C. Ammann (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research 111: D12107. doi:10.1029/2005JD006710. http://www.agu.org/pubs/crossref/2006/2005JD006710.shtml. Retrieved 2010-03-19.
33.^ Witter, J.B.; Self S. (Januar 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Vulcanology 69 (3): 301–318. doi:10.1007/s00445-006-0075-4.
34.^ Oppenheimer, Clive (19 Mar 2003). "Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption". International Journal of Climatology (Royal Meteorological Society) 23 (4): 417–426. doi:10.1002/joc.891.
35.^ Horn, Susanne; Schmincke, Hans-Ulrich (2000). "Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD". Bulletin of Volcanology 61 (8): 537–555. doi:10.1007/s004450050004.
36.^ "Katla: Eruptive History". Global Volcanism Program, Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=1702-03=&volpage=erupt.
37.^ "Laki and Eldgjá—two good reasons to live in Hawai`". USGS - Hawaiian Volcano Observatory. 26 November 2008. http://hvo.wr.usgs.gov/volcanowatch/2008/08_11_26.html. Retrieved 2009-08-06.
38.^ "Taupo - Eruptive History". Global Volcanism Program. Smithsonian Institution. http://www.volcano.si.edu/world/volcano.cfm?vnum=0401-07=&volpage=erupt. Retrieved 2008-03-16.
39.^ a b c d e "Summary of the eruptive history of Mt. Vesuvius". Osservatorio Vesuviano, Italian National Institute of Geophysics and Volcanology. http://www.ov.ingv.it/inglese/vesuvio/storia/storia.htm. Retrieved 2006-12-08.
40.^ a b c d e "Somma-Vesuvius". Department of Physics, University of Rome. http://vulcan.fis.uniroma3.it/vesuvio/vesuviustext.html. Retrieved 2006-12-08.
41.^ "An ancient Bronze Age village (3500 bp) destroyed by the pumice eruption in Avellino (Nola-Campania)". http://www.meridies-nola.org/nola/villaggiopreistoricoing.htm. Retrieved 2006-12-08.
42.^ Latter, J. H.; Lloyd, E. F.; Smith, I. E. M.; Nathan, S. (1992). Volcanic hazards in the Kermadec Islands and at submarine volcanoes between southern Tonga and New Zealand, Volcanic hazards information series 4. Wellington, New Zealand. Ministry of Civil Defence. 44 p.
43.^ Arce, J. L.; Macías, J. L.; Vázquez-Selem, L. (2003). "The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications". Geological Society of America Bulletin 115 (2): 230–248. doi:10.1130/0016-7606(2003)115<0230:tkpeon>2.0.CO;2.
44.^ van den Bogaard, P (1995). "40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance". Earth and Planetary Science Letters 133 (1-2): 163–174. doi:10.1016/0012-821X(95)00066-L.
45.^ P de Klerk, W Janke, P Kühn and M Theuerkauf (December 2008). "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology 270 (1-2): 196–214. doi:10.1016/j.palaeo.2008.09.013. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6R-4TK47K6-2&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71ba089842c02f563af451b05845ec69.
46.^ Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research 58 (3): 273–288. doi:10.1006/qres.2002.2379.
47.^ Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. Februar 2007. Retrieved January 11, 2008
48.^ Aramaki, Shigeo (1984). "Formation of the Aira Caldera, Southern Kyushu, ∼22,000 Years Ago". Journal of Geophysical Research 89 (B10): 8485–8501. doi:10.1029/JB089iB10p08485. http://www.agu.org/pubs/crossref/1984/JB089iB10p08485.shtml.
49.^ Wilson, Colin J. N. (2001). "The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview". Journal of Volcanology and Geothermal Research 112: 133–174. doi:10.1016/S0377-0273(01)00239-6.
50.^ Manville, Vern & Wilson, Colin J. N. (2004). "The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response". New Zealand Journal of Geology & Geophysics 47: 525–547. doi:10.1080/00288306.2004.9515074. http://www.rsnz.org/publish/nzjgg/2004/042.php.
51.^ Wilson, Colin J. N. et al. (2006). "The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, Characteristics and Evacuation of a Large Rhyolitic Magma Body". Journal of Petrology 47 (1): 35–69. doi:10.1093/petrology/egi066.
52.^ Richard Smith, David J. Lowe and Ian Wright. 'Volcanoes - Lake Taupo', Te Ara - the Encyclopedia of New Zealand, updated 16-Apr-2007
53.^ De Vivo, B.; G. Rolandi, P. B. Gans, A. Calvert, W. A. Bohrson, F. J. Spera and H. E. Belkin (2001-11). "New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)". Mineralogy and Petrology (Springer Wien) 73 (1-3): p. 47–65. doi:10.1007/s007100170010. http://www.springerlink.com/content/8r046aa9t4lmjwxj/. Retrieved 2008-09-20.
54.^ Froggatt, P. C. and Lowe, D. J. (1990). "A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age". New Zealand Journal of Geology and Geophysics 33: 89–109. http://www.royalsociety.org.nz/includes/download.aspx?ID=91578.
55.^ Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters (American Geophysical Union) 23 (8): 837–840. doi:10.1029/96GL00706.
56.^ Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp 173-200
57.^ a b c d Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified". Geology 19: 200–203. doi:10.1130/0091-7613(1991)019<0200:ehoesl>2.3.CO;2. http://www.geo.mtu.edu/~raman/papers/ChesnerGeology.pdf. Retrieved 2010-01-20.
58.^ Ninkovich, D.; N.J. Shackleton, A.A. Abdel-Monem, J.D. Obradovich, G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature (Nature Publishing Group) 276 (276): 574–577. doi:10.1038/276574a0.
59.^ Froggatt, P. C.; Nelson, C. S.; Carter, L.; Griggs, G.; Black, K. P. (13 February 1986). "An exceptionally large late Quaternary eruption from New Zealand". Nature 319: 578–582. doi:10.1038/319578a0. "The minimum total volume of tephra is 1,200 km³ but probably nearer 2,000 km³, ...". .
60.^ Bryan, Scott E.; Teal R. Riley, Dougal A. Jerram, Christopher J. Stephens, Philip T. Leat (2002). "Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins". Geological Society of America (Special Paper 362). http://www.mantleplumes.org/WebDocuments/Bryanetal2002.pdf. Retrieved 2010-03-23.
61.^ Bailet, R. A. and Carr, R. G. (1994). "Physical geology and eruptive history of the Matahina Ignimbrite, Taupo Volcanic Zone, North Island, New Zealand". New Zealand Journal of Geology and Geophysics 37: 319–344. doi:10.1080/00288306.1994.9514624. http://www.royalsociety.org.nz/includes/download.aspx?ID=90706.
62.^ Briggs, R.M.; Gifford, M.G.; Moyle, A.R.; Taylor, S.R.; Normaff, M.D.; Houghton, B.F.; and Wilson, C.J.N. (1993). "Geochemical zoning and eruptive mixing in ignimbrites from Mangakino volcano, Taupe Volcanic Zone, New Zealand". Journal of Volcanology and Geothermal Research 56: 175–203. doi:10.1016/0377-0273(93)90016-K. .
63.^ "Reykjanes". Global Volcanism Program. http://www.volcano.si.edu/world/volcano.cfm?vnum=1701-02=. Retrieved 2010-04-20.
64.^ Gudmundsson, Magnús T.; Thórdís Högnadóttir (January 2007). "Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data". Journal of Geodynamics 43 (1): 153–169. doi:10.1016/j.jog.2006.09.015.
65.^ T. Thordarson and G. Larsen (January 2007). "Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history". Journal of Geodynamics 43 (1): 118–152. doi:10.1016/j.jog.2006.09.005.
66.^ "Surtsey Nomination Report 2007". Surtsey, Island. http://www.surtsey.is/SRS_publ/WHL/Surtsey_Nomination_Report_2007_72dpi.pdf. Retrieved 2010-03-30.
67.^ Cole, J.W. (1990). "Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand". Bulletin of Volcanology 52: 445–459. doi:10.1007/BF00268925.
68.^ L. M. Parson and I. C. Wright (1996). "The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading". Tectonophysics 263: 1–22. doi:10.1016/S0040-1951(96)00029-7.
69.^ Krippner, Stephen J. P., Briggs, Roger M., Wilson, Colin J. N., Cole, James W. (1998). "Petrography and geochemistry of lithic fragments in ignimbrites from the Mangakino Volcanic Centre: implications for the composition of the subvolcanic crust in western Taupo Volcanic Zone, New Zealand". New Zealand Journal of Geology and Geophysics 41: 187–199. doi:10.1080/00288306.1998.9514803.
70.^ The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives By Michaēl Phytikas, Georges E. Vougioukalakis, 2005, Elsevier, 398 pages, ISBN 0444520465
External links"Decade Volcanoes". United States Geological Survey. http://vulcan.wr.usgs.gov/Volcanoes/DecadeVolcanoes/framework.html.

No comments:

Post a Comment

This blog does NOT allow anonymous comments. All comments are moderated to filter out abusive and vulgar language and any posts indulging in abusive and insulting language shall be deleted without any further discussion.